You Do
 Some Big-Oh Analysis

Give a Big_Oh analysis of the running time off each function.

1. // sums the numbers from 1 to n int A(int n) \{ int sum $=0$;
for (int i=1; i <= n; i++)
sum += i;
return sum;
\}
A. $O(\log n)$
B. $\mathrm{O}(\mathrm{n})$
C. $O\left(n^{2}\right)$
D. $\mathrm{O}(\mathrm{n}+1)$
int sum $=0$;
for (int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
sum += i;
return sum;
\}

Answer B: This performs n additions. $\mathrm{O}(\mathrm{n})$.
Answer $D: O(n+1)$ is also correct, but we usually simplify the order of growth as much as possible.
2.
int B (int n) \{
int sum = 0;
for (int $\mathrm{i}=1 ; \mathrm{i}<=2 * \mathrm{n} ; \mathrm{i}++$)
for (int j=0; j < 5; j++)
sum += j;
return sum;
\}
Is this
A. $\mathrm{O}(\log \mathrm{n})$
B. $\mathrm{O}(\mathrm{n})$
C. $O\left(n^{2}\right)$
D. $O\left(5^{*} 2^{*} n\right)$
2.
int B (int n) \{
int sum = 0;
for (int $i=1 ; i<=2 * n ; i++$)
for (int j=0; j < 5; j++)
sum += j;
return sum;
\}

Analysis: The inner for-loop (on j) always adds 5 numbers together, and the outer loop (on i) does this $2^{*} n$ times. So this is $O\left(5^{*} 2^{*} n\right)=O(n)$. Answers B and D are both correct, but answer A is better.
int sum = 0;
for (int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
for (int $j=0 ; j<=n ; j++$)
sum += j;
return sum;
\}
Is this
A. $O(n)$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O\left(n^{n}\right)$
D. The answer depends on what n is.
int sum = 0;
for (int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
for (int $j=0 ; j<=n ; j++$)
sum += j;
return sum;
\}

Analysis: The inner loop (on j) runs n steps as for each value of i from 1 to n. Altogether this does $n+n+n+\ldots+n$ steps. Those numbers sum to $n^{*} n$, so this is $O\left(n^{2}\right)$.
4.
int D (int n) \{
int sum $=0$;
for (int $i=1 ; i<=n ; i++$)
sum += i*i;
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
sum-= j;
for (int $k=0 ; k<2^{*} n ; k++$)
sum = sum*k;
return sum;
A. $O(n)$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O\left(n^{3}\right)$
D. $O\left(n^{n}\right)$

$$
\text { int } D \text { (int n) \{ }
$$

int sum = 0;

$$
\text { for (int } i=1 ; i<=n ; i++ \text {) }
$$

$$
\text { sum }+=i^{*} i ;
$$

for (int j=0; j < n; j++)
sum-= j;
for (int k=0;k<2*n; k++)
sum = sum*k;
return sum;
\}
Analysis: Note that the loops are sequential, not nested. The loop on i does n additions. After that is finished the loop on j does n subtractions. Then the loop on k does $2 * \mathrm{n}$ multiplications. Altogether there are $4 * \mathrm{n}$ steps. This is $\mathrm{O}(\mathrm{n})$

